

Relativistic Pilot-Wave Theories as the Rational Completion of Quantum Mechanics and Relativity

- Valia Allori, UniBg
- Bohm in Brazil Meeting, July 2025

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \rightarrow 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \rightarrow 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

$$= \lim_{h \rightarrow 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \rightarrow 0} h(2x+h)$$

1

Motivation & Central Thesis

- QM and relativity are in tension
 - QM: nonlocal, no clear spacetime entity to describe matter (ontology)
 - Relativity: local, spacetime-based
- Claims:
 - QM and relativity are both incomplete
 - QM needs a s-t ontology to explain the phenomena
 - Relativity needs a preferred frame to explain quantum nonlocality
 - Relativistic pilot-wave theories provide the minimal, simplest, most straightforward completion of both

2

Structure of the Talk

- 1. The problems with quantum theory
- 2. Pilot-wave theory
- 3. The spirit of relativity
- 4. Relativistic extensions
- 5. Why pilot-wave is the preferred way to go

3

Problems with Quantum Theory

- Measurement problem (Schrödinger's cat):
 - If the wf evolves according to the Schrödinger equation and it provides the complete description of physical systems, then the theory predicts unobserved macroscopic superposition (=it is falsified)
 - Usual (textbook) way out: collapse rule
 - Not ideal: imprecise... → solutions of the measurement problem:
 - dBB; GRW(P); Everett

4

Problems with Quantum Theory

- Deeper issue:
 - People usually focus on the measurement problem but even if one 'fixes' the problem of macro superposition, still there is **no spacetime fundamental entity** describing matter (ontology):
 - The wf lives in configuration space, not a real physical space
 - Lorentz, Schrödinger, Einstein, de Broglie, Heisenberg....: they were all aware of that, even if they reacted very differently

5

Problems with Quantum Theory

- A closer look...
 - Einstein: QM is incomplete
 - Several arguments (explained in more detail in the next slides):
 - **1926-Unphysical field arguments:** QM is incomplete because there's nothing moving in 3d space
 - **1935 (EPR) Nonlocality arguments:** QM is incomplete because quantum theory would be nonlocal
 - **1935-Macroscopic superpositions arguments** (=the measurement problem): QM is incomplete because it predicts unobserved macro superpositions

6

Problems with Quantum Theory

- What is wrong about a theory not grounded in s-t:
 - “It’s crazy! It wouldn’t be physics!”
 - But why?
 - Before QM physics has always explained macro phenomena in terms of the dynamics of fundamental micro objects – **reductionism/constructive/compositional explanation**
 - CM: Micro point particles moving in space evolving in time according to Newton’s laws are what the world is made of at the fundamental level
 - In CM the phenomena and the fundamental entities both live in 3d space
 - If one think that what is fundamentally real in QM (its ontology) is the wf, since the wf is not in 3d, then strictly speaking **reductionism is inapplicable**
 - Need a s-t ontology at the fundamental level

7

Quantum Nonlocality

- Copenhagen people did not care about ontology or reductionism because they were (FAPP) positivists; so shifted gears to convince them QM is incomplete:
 - Einstein (EPR): *by reductio*
 - Assume QM is complete, consider singlet state
 - If A measures her particle being spin +, the spin of B’s particle (which was undetermined before A’s measurement) becomes determined to be -
 - This is nonlocal action, which is absurd
 - Hence QM is incomplete:
 - Both spins **always had definite values**, even if QM does not give them to us, and measurements revealed them to us

8

Quantum Nonlocality

- Structure of the argument:
 - QM → nonlocality: this is absurd (locality must be true)
 - That is
 - Locality + QM → hidden variables (spin values)
 - That is
 - Locality implies that there are hidden variables
 - EPR correlations should be explained by hidden variables to avoid nonlocality

9

Quantum Nonlocality

- Why was nonlocality thought to be totally absurd?
 - locality ↔ interaction travels at finite velocity
 - Throw a rock in a pond where a toy boat is floating. The boat will ‘feel’ the rock’s presence after some time (when the waves created by the rock reach it)
 - Nonlocality ↔ instantaneous action at an arbitrary distance
 - Seems empirically false (objects can be thought of as isolated; it is possible to identify the cause of a phenomenon in its neighborhood; ...)
 - Seems unexplainable/too mysterious (if interaction does not travel, how does that work?)
 - Contradicts relativity: c is the maximum speed

10

Quantum Nonlocality

- Problem with the EPR argument: Bell (1964)
 - assume EPR conclusion and construct a local theory which has all spin values determined (spin-hidden-variables QM)
 - It makes predictions which are different from the ones of QM
 - Locality +QM → predictions_1
 - QM → predictions_2
 - We can make a “crucial experiment”

11

Quantum Nonlocality

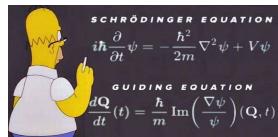
- This crucial experiment has been performed by Aspect (1981):
 - Local Spin-hv-QM (the result of assuming locality) is falsified
- Conclusion:
 - Locality is false ↔ Nonlocality is essential to QM

12

Reactions

- Accept the conclusion: **nature is nonlocal**
 - However, this is a **big conclusion to swallow**
- To try to save locality, some have rejected some other assumption in the overall argument
 - Superdeterministic theories reject Statistical Independence*
 - They allow experimental outcomes to be determined by what the experimenter decide to measure (rather than the actual value of the property being measured)
 - Bell regarded these theories conspiratorial
 - Retrocausal theories allow events to have causes in the future (rather than in the past)*
- They seem worse than accepting nonlocality**
 - Just assume nature is nonlocal (in this talk, at least)

13


Where we are so far

- QM needs to have a s-t ontology if we want reductionism
 - (that is, matter needs to be made of 3d micro stuff moving in space)
- QM needs to be **nonlocal** if we want empirical adequacy
 - OPTIONS???

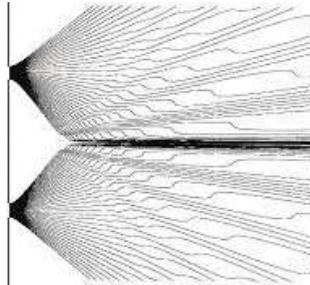
14

Pilot-Wave Theory (dBB, Bohmian mechanics)

SCHRÖDINGER EQUATION

$$i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi + V\psi$$

GUIDING EQUATION


$$\frac{d\mathbf{Q}}{dt}(t) = \frac{\hbar}{m} \operatorname{Im} \left(\frac{\nabla \psi}{\psi} \right) (\mathbf{Q}, t)$$

- Ontology (what fundamentally matter is made of): point particles in 3D space
- Particles guided by the wf (guidance equation):
 - The wf represents the interaction (objectively, like a potential), NOT matter
 - The wf evolves according to the Schrödinger equation

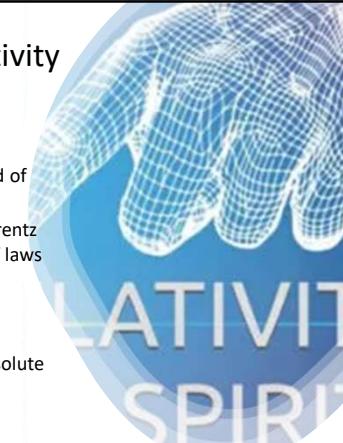
15

Features of Pilot-Wave Theory

- Provides a spatiotemporal ontology
 - particles
- Solves the measurement problem
 - Matter is never in superposition
- Accepts nonlocality as fundamental
 - The interaction is mediated by the wf which lives in configuration space

16

Hidden Variables?


- Not EPR-style hidden variables:
 - In EPR: $h\nu$ =spin property values
- Here:
 - Spin is not a property at all
 - Only positions are the 'true' properties of the particles
 - They are 'hidden' from QM (which is indeed incomplete) but they are clearly defined in dBB
- In dBB EPR correlations are explained not by $h\nu$ but by nonlocality
- So what are they for?
 - To ground the theory in spacetime!

17

The Spirit of Relativity

- Two principles:
 - Constancy of the speed of light
 - Relativity principle (Lorentz invariance: the form of laws is frame-independent)
- Geometrical formulation: Minkowski spacetime
- No preferred frame or absolute simultaneity

18

The Tensions

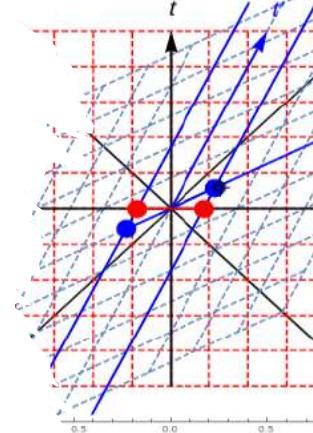
- Relativity is local: interactions confined to light cones
- Quantum nonlocality violates this assumption: Aspect experiments confirm instantaneous correlations
- Relativity is a theory of spacetime
- The quantum wf is not in spacetime

19

Alleviating the Tensions

- My take:
- Recognize that quantum mechanics is incomplete:
 - It lacks a spatiotemporal ontology to 'fit well' with relativity as a theory of spacetime
- Recognize that (ALSO) relativity is incomplete:
 - It lacks structure to accommodate nonlocality

20


Alleviating the Tensions

- My take:
- Einstein was right to think QM was incomplete, but for the wrong reason:
 - He thought one needed to have BOTH a s-t ontology and local interaction
 - A s-t ontology is needed and can be given but
 - Bell, Aspect have shown that local interaction is empirically falsified
 - Hence, since relativity is LOCAL, relativity needs to be modified too

21

Relativity as Spacetime Theory

- Events lie in 4D Minkowski spacetime
- Simultaneity is relative
- Spacetime sliced into hypersurfaces differently by observers
- Lorentz transformations link perspectives

22

What is Required from a Relativistic Quantum Theory?

- (At least) it must combine:
 - 1 Spacetime
 - Why? Otherwise, reductionism would be impossible. Also, Relativity is a theory about spacetime
 - 2 Lorentz invariance
 - Why? Because of Relativity
 - 3 Nonlocality
 - Why? Because of QM

23

Relativistic Pilot-Wave Theories

- 1- They are in spacetime
 - Particles moving around
- 2- They are Lorentz invariant
 - Dirac or Klein-Gordon equations
- 3- They are nonlocal
 - They have a preferred foliation (=absolute simultaneity), which is undetectable (but one can explain why using 'quantum equilibrium')

24

Relativistic Quantum Theories

- Do we have any better alternative?
- I do not think so....

25

Comparing Alternatives

- Relativistic GRW-type theories (with a s-t ontology like GRWm, GRWf) change only QM trying to keep relativity as is
 - PROS: foliation-free, Lorentz-invariant
 - CONS: stochastic (and nonlinear) →
 - No cause-effect distinction, supernonlocality, no energy conservation, ad hoc...
- Relativistic pilot-wave theories: change them both
 - CONS: preferred foliation
 - PROS: Lorentz-invariant, deterministic, minimally nonlocal, energy conserving, not ad hoc, ... AND preserves explanatory power

26

dBB as a Balanced Proposal

- QM is incomplete because it lacks a spacetime ontology
 - dBB gives one to QM
- Relativity is incomplete because it lacks structure for nonlocality
 - dBB gives one to Relativity

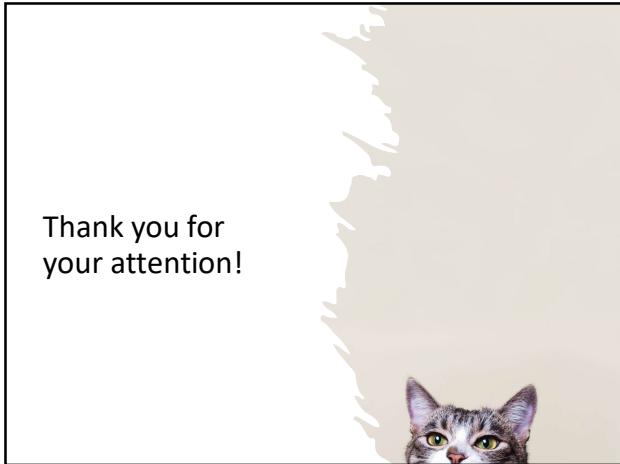
27

dBB as a Balanced Proposal

- That is....
- **dBB modifies QM and relativity MINIMALLY, MOST NATURALLY:**
 - Add s-t ontology of matter (particles)
 - Add foliation to spacetime
- By doing this, dBB retains:
 - Determinism (not always/not necessarily)
 - Lorentz-invariant dynamics
 - Compatibility with nonlocal dynamics
- Result: simple, coherent, explanatory, non-ad hoc theory

28

Final Thoughts


- Matter is real:
 - Just use the simplest one: particles
- Nonlocality is real:
 - Just embrace it explicitly
- How? Build spatiotemporal, Lorentz-invariant theories in which matter interacts nonlocally:
 - no advantage or need to do otherwise

29

Final Thoughts

- Looking for a relativistic dBB is **THE rational step forward**
 - It's not surely the final answer, there are many open issues
 - In physics (QFT?)
 - In philosophy (interaction?)
 - But that's what I think researchers should focus on
- *"That's one small step for man, one giant leap for mankind"*

30

31